
Abstract. Distributed computation over local and wide-
area networks is gaining importance and may soon
become the primary means in high performance com-
puting. The development in all areas of scienti®c
computing is closely coupled with the development of
e�cient application software that fully utilizes the power
of the modern computer resources. In numerical quan-
tum chemistry, the adaptation of method and program
development to parallel and distributed-parallel com-
puting has shown remarkable results. The contributions
of Jan AlmloÈ f in this area of research are brie¯y
reviewed in this paper. The integral-direct Hartree-Fock
calculation (zeroth, ®rst and second derivatives) will be
used as a model to investigate network-computing
techniques and paradigms.
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1 Introduction

Solving chemical problems by computation has been the
motive of a whole generation of quantum chemists,
among them Jan E. AlmloÈ f. In the early 1970s, at the
beginning of AlmloÈ f 's career, it was clear that most
problems where a theoretical-computational approach
could have an impact would require a quantitative
description of molecules consisting of hundreds of
atoms, a goal which at the time seemed to be remote.
Still, it was not unrealistic to believe that one day this
goal could be reached. The advances in computer
hardware as well as in method and algorithm research
promised rapid growth of the computational capabili-
ties.

Years later, in his lecture notes from the tutorial on
``Methods of modern Hartree-Fock theory'' given at the
European Summer School in Quantum Chemistry [1],
we ®nd the following quote:

However, the rapid progress in computer hardware of
the last decades, combined with the even faster re®nement

of computational methods during the same period, has
made [the quantitative description of molecules in the
range of 102 to 104 atoms] a very realistic objective which
could well be reached before the end of this century.

Between the early days and the moment the above
statement was made, enormous progress had been made
in computer technology, numerical algorithm research,
and, most of all, in the development of quantum
chemistry methods. There is, however, a close interac-
tion among these three disciplines; the adaptation of
software development to the realities created by com-
puter hardware is an interesting process. In his paper
``Direct methods in electronic structure theory'' pub-
lished in the monograph ``Modern electronic structure
theory'' [2], AlmloÈ f reminds us that ``[the] restructuring
of application software to fully utilize the awesome powers
of current computer hardware is one of the most
signi®cant challenges facing contemporary computational
chemistry. Considering the wide variety of available
computer architectures, and the ephemeral nature of the
cutting edge technology upon which they are based, this is
not a one-time task, but rather an ongoing development
project.''

In computational quantum chemistry, one of the
most important examples of this adaptation process is
the development of the direct methods initiated by
AlmloÈ f [2±4]. For reasons of computational expense,
the Hartree-Fock calculation had traditionally been
implemented as a two-step process, with the generation
and the processing of the integrals treated as separate
events. The rapid advances in central processor unit
(CPU) technology, with a doubling of the ¯oating-point
processing performance every 18±24 months, and the
much slower progress in the development of fast input/
output capabilities, changed this perspective. This trend
had already been foreseeable in the late 1970s, and the
break with the established approach by treating data
generation and data processing as one single process was
the obvious consequence.

Accepted with some scepticism initially, the direct
methods have turned out to be a powerful computa-
tional strategy, and are now also being used for
correlated methods (see e.g. [5±7]). With the computer

Network computing: the Hartree-Fock calculation as a model

Hans Peter LuÈ thi

Swiss Center for Scienti®c Computing, ETH Zentrum, CH-8092 ZuÈ rich, Switzerland

Received: 2 February 1997 /Accepted: 24 March 1997

Theor Chem Acc (1997) 97:211±226



architectures available today, it appears that only input/
output-free (i.e. direct) methods will grant scalability.
Although parallel input/output technology will see
dramatic improvements since it is driven by the gigantic
demand from business applications, it is unlikely that
these developments will breath life back into the classical
schemes.

Parallel computing has almost unanimously been
praised as the approach to the solution of the ``Grand
Challenge'' class problems. But after about a decade of
practical experience, there are still many ways of
performing a computation in parallel, and the discipline
of parallel computing is not yet very well de®ned. Still,
the adaptation of program development to parallel
computers has already inspired major changes in the
way methods and algorithms are designed. The focus
has shifted away from algorithms allowing high pro-
cessing speeds, usually measured in ¯oating-point oper-
ations per second (¯ops), to methods capable of
delivering performance increases proportional to the
processing power increases of massively parallel com-
puters, i.e. methods that show the property of scalabi-
lity.

Despite the fact that massively parallel computing
entered the Tera¯ops era [10], the world of computing
has become less monolithic, and the ``supercomputers''
no longer constitute the main high-performance com-
puting hardware platforms. Instead, most researchers
have access to a variety of hardware over the network.
These usually represent a diversity of properties (CPU
power, memory, input/output capacity; architecture,
programming model). It is evident that network tech-
nology has changed the way we perform computations,
and the phrase ``The network is the computer'' appears
to be more than just a (trademarked) slogan of a leading
workstation manufacturer [11]. As a matter of fact,
network computing is gaining importance and may soon
become the primary means in high-performance com-
puting.

In this paper we will focus on network computing as
an approach for the evaluation of molecular properties
at high e�ciency. We will try to illustrate the bene®t of
distributing computations over networks of compute
servers from the point of view of parallel computing,
method development, and software engineering. Again,
we will see examples of bene®cial interactions of method
development with hardware realities. Network comput-
ing is an area of interest shared with Jan AlmloÈ f, and this
paper, dedicated to his memory, is also a review of one
of our most exciting projects. The concepts presented
here are implemented in the DISCO and/or SUPER-
MOLECULE codes [8, 9].

In the following section schemes for the paralleliza-
tion of the Hartree-Fock calculation (energy, gradients,
and force constants) are reviewed. The focus will be on
schemes which can be generalized and which will be
useful in network computing. In chapter 3 the tools
needed to distribute a computation over a network of
computers are presented, and in chapter 4 the results
obtained are reviewed and some future developments
addressed.

2 Parallel Hartree-Fock algorithms

There are a number of ways to parallelize the Hartree-
Fock calculation, and the optimum choice critically
depends on the compute resource targeted. In the
present work, the focus will be on network-computing
systems of the client-server type. The servers may be
heterogeneous, and range from large-scale massively
parallel processors (MPP) via shared-memory parallel
computers (SMP) to single processor workstations.

2.1 Why Hartree-Fock theory?

It may seem that the progress in method development
will make the Hartree-Fock method obsolete in the not
too distant future. Such a development certainly looks
very plausible for applications using traditional imple-
mentations of the method (i.e. explicit calculation of the
Coulomb and exchange repulsion). For the computation
of derivatives of the energy such as force constants or
hyperpolarizabilities, the Hartree-Fock method, at least
in the short term, will maintain its position. The method
is well understood, and the wealth of experience
gathered allows for the de®nition of empirical correction
procedures such as the ``scaled quantum mechanical
(SQM)'' force ®eld technique [12].

From a method development point of view, however,
the Hartree-Fock wave function and energy are the basis
for virtually all electron correlation methods based on
atomic orbital schemes. The fact that method develop-
ment is shifting towards correlated methods with linear
scaling properties will not change this. Implementations
of correlated methods based on localized orbitals, for
example, require a Hartree-Fock ®rst-order density
matrix for the formulation of the space of occupied
and correlating orbitals (see, for example, the local MP2
method by Pulay and Sñbo [13]).

Finally, from a parallel computing perspective, the
Hartree-Fock calculation is representative of more
sophisticated theories due to its use of irregular data
access patterns. It also is su�ciently complex to serve as
a model for (heterogeneous) network computing.

2.2 Energy calculation

2.2.1 The replicated Fock matrix algorithm

The main task in a Hartree-Fock energy calculation is
the generation of the integrals �lk k mr� and their
processing (``contraction'') with the density matrix P

G�P�lm �
X
kr

Pkr�lk k mr� �1�

to the two-electron part of the Fock matrix.1 The
remaining steps, namely the computation of the two-
index quantities S (overlap matrix) and h (one-electron
part of the Fock matrix), the formulation of the Fock
matrix F

1 McWeeny notation [14]
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F � h�G�P� ; �2�
the solution of the SCF equations

FC � ESC ; �3�
the generation of a new density matrix from the
eigenvectors of the Fock matrix

Pkr � 2
Xocc

m

CkmC�rm ; �4�

as well as the computation of the Hartree-Fock energy

� � hHPi � 1
2hPG�P�i � Vnuc ; �5�

are comparatively minor tasks. Therefore, with the
exception of the solution of the Roothaan-Hall Eq. (4),
these processes will not be addressed in the present
discussion.

The pseudocode for the contraction of a general
integral �ij j kl� with the corresponding elements of the
density matrix to build the two-electron part of the Fock
matrix according to Eq. (1) is displayed in Fig. 1 [(11±22)
notation; using permutational symmetry of integral
indices].

In the most straightforward implementation, the
parallel region consists of (the code for) the evaluation
of (a batch of ) integrals, labelled ijkl, and their
processing to elements of the Fock matrix. Each
processor updates its private, partial Fock matrix. At
the end of the loop these Fock matrices are accumulated
to the full (symmetrized) Fock matrix.

This replicated Fock-matrix algorithm has led to
excellent results on systems as diverse as a Cray Y-MP
[15], clusters of workstations [17, 18], or an Intel
Touchstone Delta MPP [19].

On the Cray-YMP, in shared-memory parallel mode,
performances well beyond 1 GFLOPS on eight-

processor machines of that type were observed using
the DISCO codes [15, 20, 21]. For an SCF cycle on the
unsymmetric 38-atom organic carbonate in Fig. 2, a
performance of 1.53 GFLOP per wall-clock second on a
Cray Y-MP8/128 was measured in dedicated mode.
Using a 6-311G basis set of atomic orbitals (314
contracted basis functions), the computation was split
into 157,461 tasks. In 945 wall-clock seconds, 7,515 CPU
seconds were performed, corresponding to a CPU to
wall-clock ratio of 7.91.2 This value, not to be confused
with the actual speedup,3 indicates very good load
balancing. Feyereisen and Kendall (FK; [19]), using a
similar version of the DISCO codes, reported speedups
on the 512 processor Touchstone Delta MPP which were
linear to about 200 nodes, and which increased to a
value of about 300 for 512 nodes.

The problem with the replicated Fock-matrix ap-
proach, however, is scalability. At the MPP end, the
limits are set by the size of the memory per node. In their
benchmarks, with each node of the Touchstone Delta
having 16 MBytes of physical memory, FK were
restricted to examples smaller than 400 basis functions.
For (uniform access) shared-memory parallel architec-
tures such as the Cray Y-MP, scalability is restricted by
the small number of processors. Truly scalable algo-
rithms, however, are available for the SCF (see e.g. [22])
and even for the second-order Mùller-Plesset computa-
tion [23]. These algorithms distribute the data (Fock and
density matrix in the SCF case) over all processors of an
MPP, and use (high-speed) asynchronous interprocessor
communication to ensure uninterrupted computation.
Exploiting the large aggregate memory of an MPP, even
superlinear speedups can be achieved (see e.g. [23]).

2.2.2 A blocked Fock-matrix algorithm

The data access pattern in the construction of the Fock
matrix can be exploited to resolve the memory require-
ments and to reestablish scalability. An alternative to the
replicated Fock-matrix algorithm can be obtained by
simply moving the innermost loop index into the parallel
region (loop over l in Fig. 1). The data access pattern
shows locality which can be exploited in several ways.

Foster et al. [24, 25] extensively studied this algorithm
and variants thereof. If tasks are generated by keeping
the triples of indices �i; j; k� ®xed, we ®nd the data
access pattern shown in Fig. 3 (canonical loop ordering
assumed).

The communication pattern in this scheme which
generates O�N3� tasks shows interesting properties (N is
the number of integral batches). If a worker gets to
perform a task with a new index k, but with the same
outer indices �i; j�, only the elements D(k,*) and F(k,*)

Fig. 1. Generation of the Fock matrix (closed shell case; n basis
functions)

Fig. 2. The molecule used in the ®rst benchmark series: bis-(2,6-
dimethylphenyl)-carbonate (C17O3H18)

2 When comparing this with later benchmarks using that same
example, it was found that due to an input error in the speci®cation
of the supershells the outermost s-function of the basis set was
treated as a p-function. The �11s5p=4s3p� basis thus turned into a
�10s6p=3s4p� type basis
3 The CPU time recorded includes the parallelization overhead. The
estimated ``true'' speedup for this example is 7.65. See [15] for
details
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have to be communicated. The elements D(i,*), D( j,*) as
well as F(i,*), F( j,*) can be reused. Therefore, if the
load-balancing situation permits, the master may want
to schedule as many tasks to the same worker without
modi®cation of indices �i; j� to reduce the communica-
tion overhead.

It should be noted that in a network-computing
scheme, the fact that the workers ¯ush their partial
results regularly contributes to the fault resistance of the
scheme. It is easier to recover from worker failure than
in the replicated matrix scheme.

Foster et al. also show that for an MPP-type
environment the performance of this algorithm can be
enhanced by switching from a canonical loop ordering
to a triple sort method (i.e. loop order i � j � k � l
rather than i � j; i � k � l). This scheme, which re-
quires the computation of three integrals in the inner-
most loop (i.e. (ij j kl), (ik j jl), and (il j jk)), shows a
slight advantage with respect to communication, and,
more importantly, the symmetrization of the Fock
matrix can be avoided. In a network-computing envi-
ronment, however, we assume that there will be at least
one server with the appropriate size memory. Therefore,
the option to bypass the O�n2� memory requirement for
the symmetrization of the Fock matrix in the present
context is of little interest.

2.2.3 The small-memory parallel strip algorithm

When processing an integral �ij j kl� according to the
scheme presented in Fig. 1, for the exchange part, only
elements in rows i and j of the Fock and density matrices
are referenced. If we were to invert the loop order from
ijkl to ikjl, we would have the same situation for the
Coulomb contributions, in that only elements in rows i
and k of the two matrices would be referenced. By
splitting the loop structure into a Coulomb and an
exchange pass, and by keeping the two innermost loop
indices inside the parallel region (i.e. tasks indexed ij in
the exchange pass, and ik in the Coulomb pass), only
rows of the Fock and density matrices have to be
communicated for the evaluation of a task.

This algorithm, named small-memory parallel strip
algorithm (SMPSA) by its authors (AlmloÈ f, Sargent and
Feyereisen (ASF); [26]), requires two passes over the
two-electron integrals. Load balancing may be some-
what more di�cult, and there are O�n2� communication
events of size O�n� each.

Unfortunately, ASF do not provide performance
data for large applications. The examples they present,
only 254 basis functions in size, still show a ratio of 1.84
between the SMPSA and the ordinary (one-pass)
replicated Fock matrix algorithm. Also, the degree of
parallelism they report for this application apparently
shows traces of the communication overhead (see
Table 1.2 in [26]).

2.2.4 Splitting Coulomb and exchange contributions

What may look like an ``uphill battle'' at ®rst sight turns
out to be an algorithm with great potential. Having
divided the evaluation of the Coulomb and exchange
contributions to the Fock matrix, we can now take
advantage of type-speci®c integral pre-screening using
the thresholds

jijjkl max�4jDijj; 4jDklj� � sC �6�
and

jijjkl max�jDikj; jDilj; jDjkj; jDjlj� � sEx �7�
rather than the combined criteria for the two types of
interaction

jijjkl max�4jDijj; 4jDklj; jDikj; jDilj; jDjkj; jDjlj� � s

�8�
The estimators jij are obtained from

jij �
����������������
j�ij j ij�j

p
�9�

and Dij represent elements of the density matrix (see also
[27] for a discussion of integral pre-screening using the
Schwarz inequality).

Due to the local character of the exchange contribu-
tion ± in a non-metallic system (insulator), the size of an
exchange integral decays exponentially with the distance
of the centers involved ± the exchange cycle is expected
to essentially converge to an O�n� step (see e.g. [28]).

However, division of the Coulomb and exchange part
also o�ers the opportunity to use specialized methods or
algorithms for both contributions. The Coulomb part
can be evaluated using fast multipole methods (FMM;
[34]). In a recent paper, Challacombe et al. present a
code for the fast assembly of the Coulomb matrix [29].
Their hierarchical multipole method, named ``quantum
chemical tree code'', is shown to scale better than O�n2�
in ``systems of chemical relevance''. More recently,
Schwegler and Challacombe have also presented a
near-O�n� algorithm for the computation of the ex-
change matrix [30]. In the meantime, the development of
FMM-based methods has turned into an exciting area of
research. Concepts such as the ``J-engine'' of White and
Head-Gordon (Coulomb term; [31]), or the near-®eld/
far-®eld methods of Scuseria and coworkers (Coulomb
and exchange; [32, 33]) promise robust near-linear

Fig. 3. Data access pattern in Fock and density matrices when
keeping the innermost index l inside the parallel region (using
canonical loop ordering, i.e. i � j; i � k � l). The elements marked
with an asterisk are referenced (multiple times) also as scalars. For
cases where k < j scalars occur outside the vector elements (shaded),
but are still part of the same row of the matrix

214



scaling methods for Hartree-Fock, density functional
theory (DFT), or hybrid methods in the not too distant
future.

2.3 Gradient calculation

Di�erentiation of the Hartree-Fock energy expression
(Eq. 5) with respect to a parameter x yields

�x � hhxP� hPxi � 1
2hPGx�P�i � hPxG�P�i � V x

nuc ;

�10�
where the term involving the di�erential of the density
matrix Px can be eliminated by using the two relation-
ships

hPxFi � ÿhSxPFPi � ÿhSxWi
and

hPxG�P�i � hPG�Px�i
to obtain a simple expression which can be evaluated
from the computation of the zeroth and ®rst-derivative
integrals solely:

�x � hhxPi � hPGx�P�i ÿ hSxWi � V x
nuc �11�

This expression can be evaluated using the same
methods presented in the Hartree-Fock energy calcula-
tion. If the tasks are de®ned by quadruples of loop
indices ijkl, we will have to evaluate the derivative
integrals �ij j kl�x and compress them with the appropri-
ate products of density matrix elements (4DijDkl for
Coulomb part; DikDjl; DilDjk for exchange part).

Di�erentiation of the electron-repulsion integrals
with respect to the nuclear coordinates x, y, and z
generates a sextuplet of integrals. The total number of
tasks will remain the same as in the energy calculation,
but now a task will consist of the evaluation and
processing of six integrals. Because of the contraction of
the derivative integrals into a linear array of size NA, the
dimension of the energy gradient, we have both better
data reduction and a better communication to compu-
tation ratio than in the Fock-matrix evaluation. Parallel
gradient computations, at least from a speedup perspec-
tive, in general perform better than the corresponding
SCF calculation. An example that illustrates this di�er-
ence in a quite dramatic way is discussed in Sect. 4.1.4.

Should the memory requirement for the storage of the
density matrix be excessive, alternative schemes analo-
gous to the ones presented in the energy calculation can
be applied.

2.4 Force constant calculation

Frisch, Head-Gordon, and Pople (FHGP) derived
expressions for the analytic calculation of SCF second
derivatives [35] for an integral-direct scheme. In their
scheme, implemented in the programs GAUSSIAN [36]
and DISCO [37], all expressions, including the coupled
perturbed Hartree-Fock (CPHF) equations, are derived
in terms of AO integral computations and contractions.

The di�erentiation of the expression for the gradient
(Eq. 11) ®nally yields

�xy � hhxyPi � 1
2hPGxy�P�i � hPyF�x�i

ÿ hSxyWi ÿ hSxWyi � V xy
nuc �12�

An expression for Py in Eq. (12) can be obtained from
the di�erentiation of the general SCF condition

FPS � SPF �13�
where projecting out the virtual-occupied space ®nally
leads to an expression for the CPHF equations (Eq. 20)
in the work of FHGP [35]):

FPx
ov ÿ Px

ovFÿ �G�Px
ov��ov � F�x�ov ÿ �G�Sx

ov��ov ÿ FSx
ov

�14�
Note that in Eq. (14) the term F�x� is not the

derivative Fock matrix Fx, but rather the ``Fock matrix''
built from ®rst derivative integrals

Fx � hx �Gx�P� �G�Px� � F�x� �G�Px� : �15�
Equation 14 is solved iteratively. In each iteration, the

LHS has to be constructed from the current solution for
the derivative density matrix, whereas the RHS is a
constant.

The calculation of the force constant matrix (Eq. 12)
can therefore be divided into the computation of the
terms representing contractions of (®rst and second)
derivative integrals, and into the computation of the
derivative density matrix. The two steps are often
referred to as the ``integral Hessian'' (or simply ``Hes-
sian''), and CPHF steps. A list of the terms (four-index
quantities only) that have to be evaluated is presented in
Table 1. The resource requirements for the two steps are
quite di�erent. In both cases we have e�ective O�n3�
computations with sizable prefactors. The data reduc-
tion, however, is into an array of dimension N2

A for the
``Hessian step'', and into NA arrays of dimension n2 for
the CPHF part.4 As in a force constant calculation NA
typically adds two orders of magnitude, this storage
requirement either calls for a large-memory server, or for
a non-replicated matrix algorithm as presented in
Sect. 2.2.2.

Table 1. Two-electron integrals and their contraction in a Hartree-
Fock energy, gradient, and force constants calculation. LHS and
RHS stand for left-hand and right-hand side of the CPHF
equations, respectively. ``Hessian'' here stands for the ``Fock
matrices'' built from derivative integrals as occurring in the second
and third term of Eq. (12)

Energy Gradient Force constants

Hessian RHS LHS

(ij k kl) G(P) G(P) G(P)
G(Sx) G�Px�

(ij k kl)x Gx(P) Gx(P) Gx(P)
(ij k kl)xy Gxy(P)

4NA stands for the number of degrees of fredom (or ``perturba-
tions'')
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The beauty of this integral-driven concept for the
generation of the Hessian is that again the bulk of the
work consists of integral evaluations and their contrac-
tion with various matrices. Therefore we can use the same
types of approaches used in the parallel Fock-matrix or
nuclear-gradient computation: tasks are de®ned as the
generation and the processing of a batch of integrals. One
of the bene®ts of this approach is that it is well explored,
and that the various computations can be implemented
for a number of programming models and/or hardware
architectures (see [24] and references therein).

In contrast to the classical approaches for the
solution of the CPHF equations which are MO based
(see, for example, the program GAMESS for a parallel
implementation [38]), the AO integral-driven scheme of
FHGP involves a greater operation count,5 but is free of
large external storage requirements. The somewhat
higher operation count for the direct scheme may also
be overcompensated by the better integral-prescreening
opportunities.

The DISCO codes o�er MPI (IBM SP2) and SMP
(Cray, NEC) implementations of the Hessian calcula-
tion, and a (partly parallel) SMP implementation of the
CHPF step.

2.5 Distributed-parallel Hartree-Fock calculation

A merit of the integral-driven computational schemes
presented in Sects. 2.2, 2.3, and 2.4 is that they can be
generalized for networks of (parallel) computers with
very little modi®cation. This is essentially due to the fact
that all computational tasks of the general type

Gij�Pk�lm �
X
kr

Pk
kr�lk k mr�ij �16�

can, in principle, be executed independently and in
random order. Restrictions may be due to load-balanc-
ing or memory-requirement considerations.

Once distributed over a network of servers, each
server will evaluate de®ned fractions of Eq. (16). The
results will be accumulated by the client, who will also
perform all input/output operations.

If the servers are parallel computers using their
processors in the native programming model, we have a
distributed-concurrent [43], or, in more modern jargon, a
globally distributed-locally parallel concept of computa-

tion. The evaluation of the terms in expression (16) will
be services implemented on the various servers. The
requests for services will be issued by the client. The
parallel algorithms presented in Sect. 2 can all be used
for the implementation of these services. Architecture
and communication bandwidth considerations, how-
ever, are criteria to the honored.

Tasks consisting of pure matrix operations such as
the symmetrization and the diagonalization of the Fock
matrix, the evaluation of the energy expression (5), or
the solution of the CPHF Eq. (14) are a (partial)
exception to this scheme. Finding distributed memory
algorithms for the matrix operations is certainly possi-
ble. However, part of the bonus of network computing
is the potential availability of hardware which allows
execution of these tasks and at very high e�ciency (see
Sect. 4.3).

In Table 2 a representative set of services required in
Hartree-Fock calculations is listed and characterized
according to criteria such as scalability (``Computa-
tion''), degree of contraction (``Data reduct[ion]'', i.e. the
dimension of Gij�Pk� in expression 16), and the (mini-
mal) server memory requirements. On the bottom line
the ideal type of server is listed. For the scaling
parameters in ``Computation'', we have p < q < r and
s < p. Clearly, this table refers to ``straightforward''
implementations of the respective services, and tries to
illustrate the diversity of computations encountered in a
Hartree-Fock calculation.

3 Network computing: interprocess communication

3.1 Objectives and concepts

To communicate data and messages between client and
servers, a medium such as a communication network, a
network ®le system (NFS) or a shared memory device
has to be available. The latter technique has been used in
the earliest successful attempt to distribute computations
over several machines [44], but rapidly became obsolete
once dedicated communication hardware and software
became available.

The focus on computer-architecture independence
rather than on performance has made the parallel virtual
machine (PVM; [52, 53]) system the most widely used
communication tool for the development of distributed
memory applications. PVM also was one of the most
in¯uential contributors in the de®nition of the message
passing interface (MPI; [45]) standard, which rapidly
became the de facto standard for explicit message
passing. A number of communication tools, including

Table 2. Resource require-
ments for some of the key
services in a Hartree-Fock
calculation. See text for further
explanations

Service

Fock Grad. Hess. LHS RHS CPHF Diag.

Computation pn3 qn3 rn3 pn3 qn3 NAn2 sn3

Data reduct. n2 NA N 2
A NAn2 NAn2 ± ±

Memory (min) n2 n2 n2 NAn2 NAn2 NAn2 n2

Ideal server any any any SMP SMP SMP SMP

5 O�NAN 4� versus an (OoN4) and an O�o2v2NA� step with o and v
representing the dimension of the occupied and the virtual space,
respectively
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some implementations of PVM, now use MPI for their
message passing.

In computational quantum chemistry, PVM, MPI,
and the global array tools (GA; [46]) are the most widely
used communication tools. Gaussian, Inc., on the other
hand, has selected LINDA [47] as the parallelization tool.
LINDA provides a virtual shared memory called ``tuple
space'' through which data are transferred between
processes or from which idle processors can fetch
processes (tasks) to be executed. The GA tools, devel-
oped by R.J. Harrison and coworkers, support global
addressing for distributed arrays from within a MIMD
parallel subroutine call tree. The GA tools have been
designed in light of emerging standards, in particular
high-performance Fortran (HPF; [48]). The one-sided,
random access to distributed arrays makes parallel
programming much easier, and the GA tools have been
used in a number of major code-development projects.

However, in 1990, when we were prepared to
distribute SCF computations over a network of (multi-
processor) computers, none of the communication tools
available at the time satis®ed our modest but somewhat
biased requirements. We6 therefore decided to build a
communication tool, later called SCIDDLE, based on the
following design objectives:

± Support distributed applications (client-server model)
± Adhere to semantics of subroutine call by using
(asynchronous) remote procedure call (RPC) for
invocation of services

± Use TCP/IP sockets for networking clients and
servers

± Ensure portability.

The use of TCP/IP sockets was motivated in part by
the idea of not being restricted to local-area networks,
but also having the option of connecting servers which
are geographically remote. For coarse-grain parallelism,
a client-server scheme is a common choice of program-
ming model. Portability was an issue because the
package would have to be installed on a number of
(heterogeneous) servers. The most important decision,
however, was to avoid explicit message passing and to
adhere to the semantics of subroutine calls by using a
special implementation of the remote procedure call.
The concept was to hide all message passing within these
subroutine calls, and to have a stub compiler generate
the necessary communication routines automatically.

3.2 Sciddle and Sciddle-PVM

The communication software built according to these
design objectives, SCIDDLE, provides parallelism through
an implementation of non-blocking (or asynchronous)
remote procedure calls. The user therefore moves within

paradigms well known from sequential programming,
and there is no need to send and receive messages
explicitly. In general, the server routine is identical to the
corresponding part of the sequential version of the
program.

Procedure calls to servers are declared by interface
de®nitions, which specify the procedures executed by the
servers together with the parameters transferred (data
type, direction of transfer, etc.) using a simple declara-
tive language. The SCIDDLE stub-compiler translates
these interface descriptions to stubs that contain the
necessary communication code (see Fig. 4).

The SCIDDLE runtime system (RTS) o�ers additional
subroutines for starting, monitoring, and terminating
server processes. Multiple ongoing asynchronous RPCs
can be managed by means of call groups [49]. For a
complete example see either [50] or the reference manual
[51].

Its wide acceptance has led numerous computer
vendors to provide high performance PVM implemen-
tations. To be able to exploit these optimized PVM
implementations, SCIDDLE was put on top of PVM. The
new software also becomes easier to maintain as the
SCIDDLE RTS relies on PVM to support message passing
between client and server stubs. These, however, are still
generated by the Sciddle stub generator.

Even though another software layer is added on top
of PVM, we only observe a minor degradation of
performance. This small loss is outweighed by the new
Sciddle software safety and ease of use. For a complete
description of the new software, see [51, 56].

3.3 Disco-Sciddle

Figure 5 describes the structure of a distributed SCF or
nuclear gradient computation as implemented in DISCO-
SCIDDLE.

Once the servers and the client are in operation, the
client opens the connection to the servers (Server
Connect). After completion of some sequential work,

Fig. 4. The data ¯ow between client and server. The stubs are
generated automatically by the SCIDDLE stub compiler, and implement
the interface between client and server programs

6 These design objectives were de®ned on a hike at Lake Lucerne
(Switzerland) by Jan AlmloÈ f, John Mertz (Cray Research, Inc.) and
the present author on a hot summer day in August 1990. Our ideas
were then ``re®ned'' and implemented by our colleagues, computer
scientists Peter Arbenz and Walter Scott (ETH ZuÈ rich)
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the client sends out the data needed by the servers to
perform the computation (mainly shared variables). This
``initialization'' of the servers is performed as an RPC by
calling the procedures (or ``services'') GlobalConst and
Density, whose only work consists of the transfer of data
from the client to the server memory (in the MPI version
of DISCO both calls are implemented as broadcasts).
Before entering the inner loop in Fig. 5, the client
generates the task tables (task bu�er), from where
packages of tasks are constructed according to the
prescriptions of the scheduler, and are sent for process-
ing by a call to the STwoEl service. The argument list of
the call to STwoEl only contains the task indices (i.e. the
loop indices i, j, k and l in Fig. 1), plus ± on return ±
statistical data for the scheduler. The ®rst are arguments
declared as IN, and the latter are declared as OUT in the
interface de®nition of the procedure.

STwoEL, in a replicated-matrix scheme, will evaluate
and process two-electron integrals and accumulate the
results (partial Fock matrix or gradient). At the end of
the loop over tasks, the client will call CollectResults to
gather the partial results for the ®nal processing. At the
end of the cycle the client disconnects the servers using
SCIDDLE library calls.

It should be noted that all calls to server routines are
performed by the client. The vertical line connecting the
server procedures to indicate the ¯ow of control and
data is therefore missing. Common data on the server
are available to all routines there. The server does have a
main program, but it only performs library calls to have
its service(s) registered by the system, and to prepare to
process tasks requested by a client.

3.4 Network-computing environments

Even though Sciddle-PVM could be used to parallelize
any application which adheres to a tree-shape topology,
it is most likely to remain a tool to connect clients to
services in a network-computing environment. Interfac-
ing between the RPC and other paradigms is relatively
straightforward, and a client can therefore attach any
type of server. Ideally, the service called will be a highly
optimized implementation for that particular computer
architecture, similar to the routines of the basic linear
algebra library system (BLAS). In principle, services can
be generated that represent modules used in a compu-
tation (integral generators, equation solvers, etc.), and
will reside on a network of servers accessible to the users
registered [60].

With increasing network complexity there is also a
need to address the issue of network management at the
application level. Most recently, we have observed strong
signals coming from the World Wide Web (WWW; the
Web) and its user interface and software technology.
After changing the way information is communicated, it
appears that the Web is also changing the way education
is disseminated [58, 59], and, most probably also the way
(network) computing will be performed. Many of the
concepts developed for network communication can also
be applied to network computing.

4 Network computing: experiments and applications

4.1 Early network computing experiments

4.1.1 Overview

A summary of the early networking experiments using
DISCO-SCIDDLE is given in Table 3. Among the examples
used are the two organic carbonates shown in Figs. 2
and 6.

Strictly speaking, these experiments were not the ®rst
network-computing experiments. Clementi and cowork-
ers, with their loosely coupled array of processors (1983
and later), performed the ®rst successful attempt to
distribute a computation over several machines [44]. At
about the same time, LuÈ thi and McLean tried to connect
several IBM mainframes for direct SCF calculations
using electronic mail for message passing between the
master and slaves (client and servers in modern jargon).
Even though the concept was very promising (an input/
output-free algorithm; using general software rather
than dedicated hardware for communication), the
experiment never reached the production stage [61].

4.1.2 Networks of supercomputers:
distributed-concurrent computation

The ®rst major network-computing benchmark using the
DISCO-SCIDDLE (Version 1.0) program system was taken
with a cluster consisting of ®ve Cray Y-MPs with a total
of 20 processors. For the ®rst time we recorded a
performance which was signi®cantly greater than the
performance of an eight-processor Cray Y-MP, the
largest machine of its time. Successful from a functional

Fig. 5. The structure of the distributed computation. See text for
description of the ¯ow of control and data
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point of view, the speedups obtained, due to the lack of a
¯exible task scheduler, remained moderate (16.6 for a
complete SCF cycle).

Free from the restriction of having client and/or
servers share the same ¯oor space, we extended the
concept from local area to wide area networks (from
LANs to WANs) by connecting the machines of various
supercomputer centers. Probably the most impressive
among these experiments was the Trans-Atlantic Cluster
where the two Cray computers of the Minnesota
Supercomputer Center were connected via the Internet
with the two Cray computers of the Swiss Federal
Institute of Technology (ETH) to form a network of
four servers based at three locations (Minneapolis,
ZuÈ rich and Lausanne) and a total of 14 processors.
There were three types of servers involved (Cray X-MP,
Y-MP and two Cray-2), all running a UNICOS
operating system (see entry ``Trans-Atlantic'' in
Table 3). With this cluster we consistently obtained
compute performances well beyond one GFLOPS even
during regular production hours.

These early experiments showed that (local and wide
area) network computing is a promising approach in
large-scale computing. It also became evident that in
order to obtain good results, the load-balancing problem
would have to be addressed. The general observation in
the early experiments was that excellent server-internal
(or second-level) speedups could be attained by using
simple measures such as sorting the batch of tasks
according to size, but that the load balancing between
servers (®rst-level load balancing) was the rate-deter-
mining step. This was certainly true for servers that
would show an unpredictable response. Fault tolerance,
on the other hand, turned out to be a very minor issue as
we rarely encountered server, network, or client failures.

4.1.3 Networks of workstations

The group of Ahlrichs, using their TURBOMOLE codes
[16], was among the ®rst to demonstrate that clusters (or

``farms'') of workstations are a useful tool for generating
high-speed performance at low cost [17, 65]. From a
price/performance point of view, the ``WS cluster''
computations certainly are the most important entry in
Table 3.

The focus in the experiments with the 27 IBM RISC
workstation cluster was to study task scheduling in
systems under regular production conditions. Using a
simple scheduler, we demonstrated that the direct SCF
energy and gradient calculation can be parallelized to
obtain nearly optimal speedups on a distributed memory
system. Even under regular service conditions speedups
which re¯ect 99.5% parallelism (Amdahl's law) or an
asymptotic speedup of 200 could be obtained.7 Most
importantly, it was possible to generate supercomputer
performance at an estimated 20±25%of the cost (see [63]).

4.1.4 Meta-computing

Around 1992/1993, networking computing took on a
political dimension when the linkage of the compute
resources of the United States National Science Foun-
dation (NSF) supercomputer centers to a ``meta center''
became an issue.

To study ``meta-computing'' as a high-performance
computing concept, a series of experiments involving
three Cray C90 computers located at three di�erent sites
were performed. The machines, connected by Internet
with a bandwidth of �50 kBytes/s at the time of the test,
were the two 16-processor Cray C90/916 of the Cray
Corporate Computing and Networking Facility (CCN)
in Eagan (Minnesota), and of the Pittsburgh Supercom-
puter Center (PSC) ± both machines in dedicated mode ±
along with the Minnesota Supercomputer Center (MSC)
8-processor Cray C90/908.

Table 3. Early network com-
puting studies DISCO-SCIDDLE

a For the sites involved, see the
text
b Sum of processors of all
machines in the cluster
c From Amdahl's law without
further corrections
d The speedups quoted do not
always refer to single processor
timings, but rather indicate the
ratio between wall-clock and
CPU time

Con®guration Sitesa CPUb Comm. Perf.c

[G¯ops]
Speedupd

% Parall.
Date Ref.

SMP (Ref.)
Cray Y-MP CCN 8 ± 1.52 7.91 9/90 [15]

SMP cluster
5 Cray Y-MP CCN 20 FDDI 3.2 16.2 5/91 [64]
dedicated 98.7%

Trans-Atlantic
Cray Y-MP/2 ETH 14 Int'net 1.2 ± 9/91 [43]
Cray-2/4 EPF 35 kBs ±
Cray X-MP/4 MSC
Cray-2/4 MSC
non-dedicated

WS cluster
IBM RS6000 IBM 27 Eth'net � 0:5 ± 8/92 [63]
non-dedicated 99.5%

Meta center
Cray C90 CCN 32 Int'net 16.2 29.5 8/93 [62]
Cray C90 PSC 50 kBs
dedicated 99.7%

7 The maximum speedup (``asymptotic speedup'') that can be
reached with a 0.5% serial code is 200
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For this experiment, the structure of the molecule in
Fig. 6 (no symmetry; 6-311G basis, 374 contracted basis
functions) was evaluated starting from a minimal basis
geometry. Each SCF and gradient computation con-
sumes 1,187 and 8,781 s CPU time, and generates 548
and 564 MFLOPS, respectively (single processor mea-
surements).

The gradient calculation, using the CCN and PSC
machines (32 processors in total) was executed in 298 s
wall-clock time, corresponding to a CPU to wall-clock
time ratio of 29.5, and a processing speed of 16.16
GFLOPS. The corresponding SCF calculation only
experienced a moderate speedup upon the clustering of
the two servers.

In the gradient calculation, the serial time measured
�tser� was ®ve, the communication time �tcomm� nearly
10 s. The amount of data transferred from client to
servers was 560 kBytes, whereas the nuclear gradient
data returned from the servers was 1.5 kBytes (replicat-
ed data algorithm). For the SCF calculation tser � 7 s,
with (almost precisely) twice the communication time of
the gradient calculation. The parallelism in that imple-
mentation of the SCF calculation is insu�cient to
generate a signi®cant speedup upon networking the
two machines. Adding a third Cray C90 to the network
made it possible to increase the performance of the

gradient calculation. The performance of the SCF
calculation, however, began to deteriorate.

Using a simple extension of Amdahl's law (Eq. 17)
with the performance data collected in these experi-
ments, it is possible to model an extended ``meta
computing'' experiment. The assumptions are that the
communication latency for the transfer of the Fock and
density matrices between the client and all servers is
identical (10 s, corresponding to a bandwidth of
55 kBytes/s, that there is no change in the quality of
the ®rst-level load balancing, and that we experience
perfect second-level load balancing. These ``predictions''
therefore represent an upper bound.

Speedup � tCPU
tWall-clock

� tser � tpar
tser � tpar=p � �mÿ 1�tcomm ;

�17�
In Eq. (17) p stands for the total number of processors in
the cluster, and m denotes the number of servers
involved in the computation.

The plan to perform a large scale ``meta center''
experiment by adding the Cray C90 computers of the
NASA Ames Research Center in Mo�ett Field (Cali-
fornia), and the San Diego Supercomputer Center
(SDSC) to the network was never realized for two
reasons: a benchmark involving ®ve di�erent centers
under three di�erent concepts of operation (academic,
national laboratory, industrial) was di�cult to coordi-
nate, and it also seemed that the experiment would not
provide insight beyond what could be studied by using
simulation. The projected speedups for the SCF and
gradient cycles are shown in Fig. 7.

The total calculation took 12 gradient cycles and 80
SCF iterations, which, with a ratio of 5.5 between
gradient and SCF cycle time, amounts to 51 h CPU time
on a single C90 CPU (approx. 500 MFLOPS.). Using 16
CPUs of one C90, the total time for the computation is
reduced to about 200 min. About 45% of this time is
spent is SCF cycles. Distributing the computation over
the ``meta center'', this structure optimization terminates
in slightly less than 2 h, but now as much as 70% of the
time is needed for the SCF computations. The part
which distributes poorly (i.e. the SCF part) due to its
communication to computation ratio acts like the serial
portion in a uniformly parallel application. Unless the
example is scaled up drastically, a ``meta cluster'' of
Cray C90s (or equivalent) with the present communica-
tion bandwidth is not the ideal compute resource.

4.2 Scalability aspects

In network computing, scalability also depends on the
performance of the task schedulers (i.e. the load
balancing at all levels of parallelization), the inter-node
communication overhead, and the completeness of the
hardware functionality present (i.e. the type of servers
available in the network). An other concern that grows
with the complexity of the network is the issue of fault
tolerance, or, if addressed in a preventive context, fault
resistance.

Fig. 6. The example used in the ``meta-computing'' tests

Fig. 7. Projected speedups for the SCF and gradient calculation as a
function of the size of the meta-cluster of cray C90 computers (see
text) using Eq. (17) with the parameters described in the text. The
``sawteeth'' show the impact of the communication overhead created
each time a new server is added to the network
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4.2.1 Task scheduling and load balancing

In a typical production environment, the servers are not
dedicated to the user, and therefore any optimal task
scheduling has to include the e�ects of the varying and
often unpredictable availability of clock cycles on each
server in the network. If the task size, the communica-
tion bandwidth, and the server performance (i.e. the
number and quality of clock cycles awarded to a task by
the server) could be predicted accurately, the task
scheduling problem could be solved analytically, and
unnecessary server idle time at the synchronization
points could be eliminated. In a non-dedicated network
none of these parameters can be predicted accurately.
They can, however, be measured ``on the ¯y'' as the
computation proceeds. We therefore decided to design a
task scheduler that would generate and distribute tasks
based on an algorithm whose parameters would be
dynamically updated during the process (see Table 4
below). This scheduler would predict the processing time
Ts (and therefore the completion time) of a task issued at
time � t according to the expression

Ts�t� � W �t�
SMsLs

�18�

The tasks have to be issued in ``task packages'', so
that a server will get to process an entire batch of client
requests. Obviously, a good strategy is to issue large
packages at the beginning of the computation, and then
to reduce the package size gradually to a prede®ned
minimal size (usually no task packages smaller than 1%
of the total workload were generated). This ensures that
the client-server communication events do not scale as
the number of tasks (i.e. O�N4� with N as the number of
integral batches), but only as roughly the logarithm of
the number of tasks, and to maintain good second-level
load balancing.

Within the frame of this model, the optimal amount
of work to be assigned to server s is

Ws � f Wtot �
X
s0 6�s

�Ts0 ÿ T �Rs0

( )
Rs

Rtot
�19�

where Wtot �
P

s Ws is the amount of work left; Ts0 is the
point in time at which server s0 is scheduled to return
(i.e. to complete its current package); T , the current
time; Rs � SMsLs (i.e. the response of server s); and
Rtot �

P
s Rs, the total response of the network.

This scheduling scheme allowed us to obtain excellent
results for SCF and gradient calculations on workstation
clusters under regular production conditions. With
optimal scheduler settings 99.5% parallelism, corre-
sponding to an asymptotic speedup of 200, could be
achieved [63].

The measurements showed that because of the
stochastic nature of some of the components in the
load-balancing problem, it appears very di�cult to
design an algorithm that outperforms the one presented
without introducing a much higher level of complexity.
At some point it would be necessary to know the details
of the scheduling algorithms used by the operating
system of the various servers. The time slices awarded to
a task of a given size by a server under a given load
scenario will di�er if the servers are running di�erent
operating systems. But even if the network were
homogeneous, certain servers may use the same sched-
uler with di�erent scheduler settings. Very small tasks are
typically processed with high priority, and thus the
scheduler presented here will update the parameter Ls in
an undue manner, as the better response is interpreted as
a change in the load situation on that server. Trying to
avoid falling into vastly di�erent policy regimes of the
server schedulers was another reason for introducing a
minimal task size concept.

Even more di�cult to predict is the network perfor-
mance. Not much of a concern when using (fast) LANs,
the communication delays in WAN clusters may cause
major disturbance. Attempts to include the (anticipated)
communication bandwidth into the scheduler were
unsuccessful. Once centers become connected through
communication services which provide a sustained
bandwidth, such as ATM networks, this problem will
no longer exist.

4.2.2 Matrix operations

Once the parallelization of the quantities

Gij�Pk�lm �
X
kr

Pk
kr�lk k mr�ij

has been completed, most of the remaining serial part of
the computation is in the solution of the matrix
equations (Roothaan-Hall; CPHF) to generate a new
matrix Pk. In energy calculation with 2,000 or more basis
functions, there will be an increasing dependency of the
overall speedup on the diagonalization of the Fock
matrix, an approximate O�n3� process, for which no
e�cient distributed memory algorithms are available
yet.

However, with the introduction of update methods to
bypass the diagonalization of the Fock matrix as
developed by AlmloÈ f and Fischer [40], or with the
schemes presented by Shepard [41] and Rendell [42], the
need for explicit diagonalization has been greatly
reduced. Diagonalization is still required to create an

Table 4. Description and policies used for scheduling parameters
used in Eqs. (18) and (19)

Item Description Update policy Alternatives

W �t� (Work-)size of task t
(estimate: number of
primitive integrals)

± Create log ®le

Ms Number of integrals
processed by server
s per unit time

Measured and up-
dated after com-
pletion of cycle

±

Ls Fraction of server s
awarded by server
OS to process

Updated after
each task

Separate
commu-
nication

S E�ect of integral
screening (global)

Updated after
each cycle

Include in Ms
for each task

f Fraction of Ws actually
handed out to server s

static update
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initial set of orbitals, canonical orbitals at the end of the
SCF process, and, in some cases, for the generation of
a Fock-transformation matrix (LoÈ wdin orthogonaliza-
tion).

Algorithms which parallelize for shared memory
multiprocessor systems are available. A modern way to
address this problem is to use the source code provided
by a network library such as NETLIB,8 compile it using
the parallelizing compiler of the target shared memory
multiprocessor system, and make it available as a service
in the compute network. The speedups obtained, about
3.3 on an eight-processor machine, only make it possible
to ``hide'' a 40% increase in problem size when using the
parallel codes.

4.2.3 Communication

Socket communication between client and servers is a
serial process, i.e. the client can exchange messages with
only one server at a time. To minimize the impact on
scalability in DISCO-SCIDDLE communication is over-
lapped with computation by enabling a server to start
working immediately after being initialized by the client.
In the ``Trans-Atlantic'' experiments, for instance, to
optimize the overlap of communication and computa-
tion, the local servers were initialized before the servers
across the Atlantic (see Table 3 and Fig. 3 in [43]).

The implementation of a client-server broadcast
function would require a major redesign of Sciddle and
``true'' broadcast performance would only be obtained if
the network hardware and protocols used were to
support such communication.

Generic PVM ± and therefore also SCIDDLE ± relies on
UNIX sockets for interprocess communication. For an
increasing number of platforms, implementations of
PVM are available which either ``sit'' on top of MPI or

even on the native message-passing system. The SCIDDLE
RPCs, in these cases, are executed using these native
protocols, as negotiated by PVM. RPCs between a client
and servers residing on nodes switched through high-
speed communication systems such as a HIPPI channel
are formally also executed using socket communication,
but with protocols performing better than TCP/IP. In
these cases, with communication bandwidths up to
100 MBytes/s (see Chap. 4.4), the communication laten-
cies in Hartree-Fock calculations become negligible even
in large force-constant calculations.

4.2.4 Fault resistance

Somewhat surprisingly, in network-computing applica-
tions we rarely encountered problems such as fatal server
or network failure. By far the most common source of
problems were server processes which had exhausted
their resource limits (mainly the CPU time allocation).
In most applications the servers had to be run in batch
mode, and it often occurred that a server would be more
active than anticipated at submit time. Therefore there
was the danger that it would be aborted by the kernel.
This example, again, illustrates the need for a more
sophisticated network-computing software infrastruc-
ture.

Using algorithms other than the replicated matrix
schemes, more dynamical reaction on changes in the
network performance during processing becomes possi-
ble. At times, communication delays between the client
and a particular server create idle situations that can be
avoided by re-issuing the last task accepted by the server
responsible for the delay.

4.3 Heterogeneous networks: AlmloÈf's eclectic approach

The incorporation of new functionality in a computer
network increases the ¯exibility of the method developer

Fig. 8. Task scheduling on a workstation
cluster under regular production conditions

8 See: http://www.netlib.org
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with respect to algorithm and implementation design. In
the January 1993 edition of the SIAM News [67], ASF
show that by using two di�erent machine types, with
each treating the portions of the algorithm that are
appropriate for its architecture, a calculation can be
performed considerably faster than on either of the two
computers individually. Using a massively parallel
computer (a Connection Machine-5 with 512 processors)
to build the Fock matrix, and a vector-type computer
(a Cray-2) for the remaining part of the SCF cycle, it
would take the top-performer machine of that genera-
tion (a Cray C90) to beat the performance of ± what they
called ± the eclectic approach.

In a more recent paper [26], the same authors again
use a vector processor for the matrix algebra part of the
SCF calculation in order to ``hide'' the poor perfor-
mance of the CM-5 on this segment of the computation,
but also to ``export'' the memory bottleneck away from
the MPP. The bypass of the memory bottleneck allows
them to perform computations with more than 1,000
basis functions using their small-memory parallel SCF
algorithm (see Sect. 2.2.3).

ASF show that the eclectic approach allows one to
bypass architectural bottlenecks (memory, input/output)
with which a homogeneous compute resource may
confront its user. They also show that diverse function-
ality may be used to enhance the speedup in a distributed
computation. If the concept of meta-computing is to
become reality, it will be for the fact that it o�ers
resource heterogeneity. In high-performance computing,
it is the option to use approaches such as the eclectic
approach that will have to generate the ``added value'' to
compensate for the ``investment'' involved.

4.4 ``SuperClusters''

4.4.1 Concept

From the combination of shared-memory multiproces-
sing and high-speed networking, both well-established
technologies, a new line of computer architectures has
evolved. From a hardware point of view, we have a set of
shared-memory multiprocessor modes connected
through high-speed networks. From a programming
model point of view, some of these systems o�er a
global address space under non-uniform memory access
(NUMA) conditions, whereas others have to be pro-
grammed using message-passing techniques.

At ETH ZuÈ rich, a cluster consisting of four Cray J90
shared memory multiprocessor computers connected
through a HIPPI channel was installed. This ``Super-
Cluster'' with a total of 40 processors is to give the user a
single image view of the resource using system software
tools such as the network queuing environment (NQE)
and the distributed ®le system (DFS). For the program-
mer, this resource is a network-computing platform with
very high inter-node communication speed.

4.4.2 Uniform-versus mixed models

If the algorithm permits, the programmer has two
options to distribute a computation. One is to reference

each node in the supercluster as a multiprocessor server
using its own (native) multitasking system. In that case,
we have a mixed model which combines client-server
with shared memory parallelism (i.e. globally distributed
± locally parallel).

However, with the latest implementations of MPI, the
programmer will have to consider the option of refer-
encing each processor in each SMP server separately. It
is expected, at least for systems with eight or more
processors, that spawning n processes on an n-processor
SMP architecture will be more e�cient than using this
server as a shared-memory parallel resource [68]. In this
case, a client will spawn processes that all will execute in
serial mode. Parallelism is controlled and invoked at the
client-server level. Apart from taking advantage of
potential turnover in processing speed, this bypass of
shared memory parallelism when using an SMP server
also frees the user from having to maintain several
versions of the server codes. Since only one program-
ming model is involved here, we will refer to this
approach as the uniform model.

4.4.3 Early examples using the uniform model

Using a 470 basis functions Hartree-Fock energy
calculation as an example, the prediction that the
uniform model will be competitive could be con®rmed
[69]. The results, graphically displayed in Fig. 9, show
that the performance di�erence between the uniform and
the mixed model is very small even for an SMP server
with only a few processors (an eight-processor Cray
J90).

The communication overhead, 2n rather than just two
sets of matrices (replicated scheme) have to be trans-
ferred, does not seem to critically a�ect the performance
of the uniform model. As long as only one server is
involved, di�erences in load balancing do not show. In
both cases the outermost loop is over the number of
processors, and the tasks are distributed from a task
bu�er. We should note that on certain SMP systems
it may be more e�cient not to generate task bu�ers
(a serial process), but to loop over tasks instead. The
memory-time integral for the uniform model, however,
will be n-times larger. Also, in applications such as the
computation of the LHS of the CPHF equations, the
memory requirement set by the algorithm may not allow
the use of the uniform model (see Table 2).

5 Experiences, conclusions, and outlook

The ®rst phase of network computing has been con-
cluded. After about 5 years of practical experience, it
appears that the most important ``evolution product'' of
the ®rst network computing era is the workstation
cluster. Viewed initially as a way to accumulate sheer
computing power, the focus ®nally shifted towards
computational e�ciency. Combining the power of
low-cost processors, often scattered beyond domain
boundaries, makes it possible to run calculations at
supercomputer speeds. This shift of focus is illustrated
by the fact that many of the popular quantum chemical
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softwares such as GAUSSIAN or TURBOMOLE o�er
``network versions'' of their codes.

Network computing has demonstrated that compu-
tations can be performed faster than on any other single
computer. It has also been demonstrated that computa-
tions can be performed more e�ectively, if the hardware
diversity of a heterogeneous network permits response to
resource requests of an algorithm which are di�cult or
impossible to satisfy by the remaining servers in the
network (the eclectic approach). Network computing,
however, has not yet been able to demonstrate that
computations larger than those possible on a single
server can be performed. Methods which scale linearly in
problem size, or applications that pose resource requests
impossible to honor by one single computer architecture,
will change this observation.

Once communication softwares such as PVM or the
GA tools became available, the development of net-
worked versions of applications advanced quite rapidly.
Fortunately, a standard in message passing is emerging
(the message-passing interface, MPI). Convergence in
the area of computing infrastructure will remove many
obstacles (and uncertainties) from method, algorithm,
and program development.

Meta-computing, on the other hand, has not yet lived
up to the expectations. Among the reasons are the lack
of the corresponding software infrastructure and the fact
that the Internet, the main communication network
connecting academic compute centres, is burdened by
the WWW and other services. One exception is the
``MetaCenter for Supercomputing in Norway'',9 which
links the compute resources of the four Norwegian
universities through a 34 Mbit/s network. Similar
``research networks'' are planned elsewhere. Also,

dedicated inter-center GBits/s network connections have
been installed to facilitate the networking of compute
resources. The availability of these communication
facilities will certainly have a very positive impact on
developments in network computing.

The adaptation of method and algorithm design to
parallel computer architectures has stimulated a number
of interesting developments. The call for linear-scaling
methods, for example, has initiated some very promising
e�orts to compute the Coulomb matrix in Hartree-Fock,
DFT and hybrid methods at near-O�n� scaling. All
examples, including the ``quantum chemical tree code
(QCTC)'' of AlmloÈ f and coworkers, are based on fast
multipole methods.

In their QCTC paper, the authors note that ``the
decoupling of the exchange and Coulomb matrices provides
the freedom to pursue specialized algorithms for the
evaluation of each.'' Initially a recipe to reduce thememory
requirements of the replicated Fock-matrix algorithm, an
O�n2� request impossible to satisfy in an MPP, the small-
memory parallel strip algorithm has evolved into much
more than an elegant bypass of a hardware bottleneck. In
the meantime, near-O�n�methods for the computation of
the exchange matrix have been presented.

Even if network computing has not stimulated any
such important method developments, its impact on the
way we perform computations, and on the way we
design application programs, has been noticeable. Split-
ting computations into services, an approach related to
object-oriented programming, creates the opportunity to
utilize similar concepts to those used to implement
libraries such as the basic linear algebra system (BLAS).
The availability of algorithms that, at least for a certain
part of the computation, provide extremely high perfor-
mance (superlinear speedups on an MPP, for example),
will invite the program developers to reconsider some of
the concepts.

Fig. 9. Tasking versus uniform model

9 See: http://www.metacenter.uio.no/
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The accomplishments reported in the application-
software area, the more transparent situation with
regard to computing models and paradigms, along with
the expected increase in network capacities, will greatly
facilitate advances in network computing, and bring the
slogan ``The network is the computer'' closer to reality.
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